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INTRODUCTION 

While linear algebra is a field of mathematics that presents major difficulties for tertiary education undergraduate 
students in general, linear dependence or independence, as a concept, has the added difficulty of being addressed in 
a variety of ways [1-3]. Matrix equations, vectors and systems of linear equations present different, but interchangeable 
ways to approach basic concepts. This offers a chance for multiple representations, while adding a level of difficulty, 
i.e. each representation is familiar to students and yet is different, leading to misconceptions in pre-existing knowledge. 
Handling multiple representations of the same concept requires students to overcome their established practices and 
conceptualisations. The latter work well enough when handling each representation, but are inadequate if 
an overarching cohesive concept is to be developed. Abstract thinking in advanced subjects is difficult for students and 
is exacerbated by learning gaps from earlier years [4]. Still, a careful introduction by the teacher can allow the 
rearrangement of the pre-existing separate concepts into a cohesive, working whole. 

The research presented in this article has been part of an ongoing project the aim of which is to improve the teaching of 
introductory lessons to students at the University of West Attica (UWA), Piraeus-Athens, Greece. The goal is to 
improve learning outcomes and better support students in learning the subject matter in a manner that allows for deeper 
understanding and does not hinder their ability to apply this knowledge to specific problems. Digital educational 
technologies were used as tools in the learning process. 

While in previous instances, the results and outcomes were presented of interventions to groups of volunteer students of 
UWA, in this article are found the results of such an intervention in a regular class of first semester students of civil 
engineering on an introductory lesson in linear algebra. This was accomplished by introducing changes to the traditional 
learning environment involving a constructivist design of the learning and a use of digital technologies.  

One major question for this research proved to be how to achieve conceptual change through the proper use of cognitive 
conflict or challenge. In the case of linear dependence or independence, the authors attempt to answer that question in 
this article. 

THEORETICAL FRAMEWORK 

Tall’s Three Worlds of Mathematics 

The basic theoretical concept behind this work is that of Tall’s three worlds of mathematics [5]. According to Tall, there 
are three distinct realms of mathematical thinking, i.e. the embodied, the symbolic and the axiomatic. These three 
worlds permeate the learning process, but are different in structure and relate to different kinds of thinker/learner. 
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Since the concepts, processes and problems in the three worlds present a number of difficulties, a model better tuned for 
learning attainment was used as an intermediary capturing tool. The actions, processes, objects and schemas (APOS) 
model is compatible with Tall’s concepts [6]; it categorises knowledge, and is consistent with cognitive constructivism. 
It posits that acquiring mathematical knowledge involves mental actions, processes and objects organised into schemas. 

Finally, the intervention design was based on Kolb’s experiential teaching model [7]. Every intervention was designed 
to include four stages: concrete experience; reflective observation; conceptualisation/theorising; experimentation and 
action, leading to a new learning experience. The four stages and their sequence are set, although the new learning 
experience could vary. 

DATA COLLECTION AND RESEARCH METHOD 

Methods Based on Discussion, Observation and Assessment 

The methods used in this study included in-class interviews/discussions, independent researcher observations and 
assessment of recorded data. The research interview was a discussion between two people, initiated by the interviewer, 
with the purpose of acquiring relevant information. The content is specified by the purpose, description and 
interpretation of the research [8]. There were two types of interview. The initial interview was semi-structured. 
Interviewees described their earlier educational experiences, their knowledge, their views, their conceptions and 
interpretations of specific subjects. A number of exploratory questions regarding mathematics and linear algebra 
covered a substantial range of concepts in order to establish a baseline cognitive level for the student. 

A number of micro-interviews also occurred, viz. open, of short duration, taking place sometimes more than once, 
during sessions. These often accompanied the presentation of a new theory revealing a difficulty in understanding on 
the part of the student. They lasted for a few minutes; their end depending on clarification of the subject, the end of the 
session or in rare cases a consensus to revisit the subject on another occasion. The interviews took place in the 
classroom when it was feasible to do so in the time available. Due to time limitations on the part of the participating 
students, it was decided that the interviews would take place every time there was a difficulty in understanding the 
material. Even though there was a opportunity for personal interaction, they mostly took place in a group and 
participation varied. 

With an initial thematic approach, the interviews were driven by the answers of the students, which presaged 
subsequent questions, thus creating a vortex of questioning. Students would often also participate with questions of their 
own, contributions or examples, asking questions of an interviewee or the group. This allowed students to express their 
idea of basic concepts and processes in solving problems, and also on the interconnections between concepts. 

As Clement opined, the interviews gave the researchers an opportunity to collect data on cognitive processes on the 
ideas of each subject, based on their own mediation, thus exposing cognitive structures and processes [9]. This kind of 
communication was often unbalanced between interviewer and the interviewee. Hasty questioning might have led to 
inaccurate or deceptive information [10]. There was also a chance the interviewers’ stance and attitude would bias 
students away from their actual positions and ideas. 

RESULTS 

During the initial sessions, which were mainly investigational, the students demonstrated adequate knowledge of topics 
in linear algebra, i.e. matrices, systems, existence of solutions, dependence/independence of vectors, and so on. A large 
percentage had little difficulty creating vectors within a co-ordinate system, representing them as ordered pairs of 
3-tuples and 4-tuples. They could also produce vectors as linear combinations of the vectors of the normal bases of the 
spaces R2 and R3. They could analyse each vector into its components and determine the vector co-ordinates with 
respect to a particular base. Moreover, they used suitable co-ordinate systems to plot their examples in R2 and R3 
spaces. In other words, they appear to have understood the representations of a vector, and could articulate the 
relationship between ways of representing vectors. 

In these sessions, the authors employed activities aimed at the investigation of the level of understanding of concepts, 
but also of the relations between them, for example see Figure 1. In this way, the capability is offered to determine the 
degree of conceptual understanding of the concepts, and not just of the algorithmic processes that emerge, which can be 
carried out in a mechanical way. In individual activities, the students used, as needed, either the definition or their 
observation about the identification of analogies in the relations of vector co-ordinates, so that they could reach faster 
conclusions and decide whether vectors are linearly dependent or independent and, if so, which. 

Figure 1: A characteristic exercise. 

Check whether the following sets of vectors are linearly independent or not (do this check in as many ways as possible). 

1) (1, 4) , ( 1,7)a b −
 

2) (1, 2, 3) , (0,1, 4) , (0,0, 2)a b c−
  

3) (1,5, 2) , (2, 4,6) , (2,10,4)a b c
  
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However, the general observation regarding the actions of the students is that, although they apply the definition of the 
linear dependence and independence, they do not realise that this leads to solving systems of linear equations. They do 
not report it as a finding during the first few sessions, but they perceive it as an examination process of linear 
dependence and independence (which, in any case, it is) and they pass it by without drawing the necessary conclusions. 
They do not extract facts, such as the notion of the equivalence of seemingly independent processes. It appears that their 
knowledge was compartmentalised and not unified; they did not recognise the parts that comprised unified knowledge. 

The fourth session followed the model of guided discovery. Relatively strong guidance was necessary for students to 
overcome the limitations imposed by their previous restricted knowledge of the topic. The session was not characterised 
by the emergence of theories and experimentation [3]. Nevertheless, there were a few experiments allowing students to 
understand the role of numerical changes of the vector co-ordinates (within a vector equation) in the shift of relative 
positions in three-dimensional space (see Figure 2). 

Whenever the 3D vector decomposition application was introduced, an interesting difficulty was observed. In their 
attempt to approach the system of linear equations as a vector equation, the students had difficulty in using x, y and z as 
factors, as required by the alternative form of application of the vector equation. Regarding the application, it is 
essential to note the way it is presented to the user. Thus: 

a) the application is based on the principle of constructing a vector x, such that c1u + c2v + c3w = x. The whole
procedure of analysis ends with a system of linear equations, where the role of the usual unknown quantities x, y,
z, is assumed by c1, c2 , c3;

b) the application does not check whether the system has solutions or not, but simply states whether there are
independent vectors or not. This omission was addressed by prompting the students, so that they would determine
if a particular construction is indeterminate or inconsistent.

Figure 2: Results of changes of the vector co-ordinates. 

The students, although they knew fairly well the respective definitions, initially felt embarrassed. They saw the symbols 
and the objects, but did not understand their function; even less so that it would assist them in solving the system of 
equations. They did not have the required familiarisation with the vector expression of a system of linear equations, and 
could not focus on the essence of the subject. The vector equation created more problems than the existing one. 
The peculiarity of the symbols resulted in their inability to identify the unknown quantities. It is highly probable that the 
notion they had about linear dependence and independence did not originate from the understanding of vectors, 
since this appeared to form during the session itself. 

It was through the assistance of the tool that the indirect approach by the students to the topic was revealed; by working 
with the tool and by experimenting, they eventually approached the concepts and improved their knowledge and 
perception. The linking of the picture of a system that corresponds to the linear dependence of vectors, to the possibility 
of construction and checking inside the dynamic environment allowed the transfer of the pre-existing understanding of 
this concept from the context of R2, through the appropriate expansion into R3, and finally to the understanding of the 
greater variety that this space offers in the cases of linearly dependent vectors. 

Initially, the students noticed that the linear dependence in R3 does not require the vectors to be parallel, but it also adds 
the novel case of the coplanar vectors, where the linear dependence leads to a unique solution. Consequently, they 
started to acquire an intuitive grasp of linear dependence and independence in three-dimensional space, transcending the 
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dry application of the strict definition of the independence of a set of vectors. The observation that the equality of 
vectors requires equality of co-ordinates - in the sense they are not independent equalities, but the simultaneous 
satisfaction of all equations is required - brought out the concept of a system satisfying many conditions. 

At the concept level, the definition of a system is based on the manner in which it is examined. In the present case, 
the system of linear equations appears prompted by a vector equation. Starting from what was discussed and 
investigated, the students saw the vector x decomposed into the three components of the directions of u, v and w. 
Subsequently, they interpreted the numerical coefficients c1, c2 and c3 as the multipliers of the vectors that produce the 
components of x. In other words, based on the abstract relation of the linear combination of vectors, they linked the 
image of the parallelepiped offered by the dynamic environment and made all the required correlations. The linear 
dependence of the columns of matrix A (the matrix form of the system) was linked to the uniqueness of the solution. 
So, the uniqueness of a solution is linked to the number of linearly independent columns, while indeterminate or 
inconsistent solutions are linked to the number of linearly dependent columns. 

The authors observed the development of a more coherent and multi-faceted mental image of the concept of a linear 
equation system, based on the manner with which the system is examined. At the same time, there was a development 
of the ability of the students to transfer, through investigative activities, the new knowledge into different contexts. 
The processes appeared to lead to an embodiment (or at least an encapsulation) of the symbolic knowledge, as predicted 
by Tall [4]. In this way, the sense is created that an activity which, at first glance, appears unnecessary and even 
gruelling, ultimately has a significant meta-cognitive value. Through the cognitive conflict that was caused, the picture 
of the concept of linear system assumes for the students a novel meaning, while around it new conceptual 
interconnections (linear combination, linear dependence/independence) and new knowledge schemas are developed 
[11]. The students appeared to fully comprehend, a posteriori, the activity. 

The benefits for the students stems from the collective negotiation of concepts which, in each particular case, led to 
further practical exploitation of the environment. There were indications of the benefits of collaboration. The strength of 
working in groups of two-to-three emerged, when the process took place within a suitably organised learning 
framework. The process would not operate for certain students without the remarks of their colleagues. 

The fifth session was comprised mainly of example-formation activities. The students were asked to produce examples 
of linear equation systems that would illustrate various relations, such as linear dependence and independence. This was 
an attempt to combat the difficulties of relating theoretical concepts with geometric content. The introduction of the 
computing environment led to a change of learning approach from an epistemological point of view, and to the 
strengthening of the reflection of the students, as they connected the mathematical objects with problem solving [1][12]. 
The aim of these activities was to trigger reflection in the students, so that they could link definitions and forms, 
and finally representations to each other. 

According to Bogomolny, students who structure examples of matrices with identical rows or with rows that are 
multiples of one another probably comprehend linear dependence [13]. On the other hand, students who emphasise 
relations between columns can produce sets of linearly dependent vectors. These latter students are probably assisted by 
their familiarisation with column relations, which encapsulate linear dependence and, consequently, they are led to 
a higher degree of abstraction. 

At first, students are prompted to offer an example of a 3 × 3 matrix that has no zero values and with columns linearly 
dependent. After that, they are prompted to offer an example of a 3 × 3 matrix that has linearly dependent columns, 
which have not originated from a vector. The underlying hypothesis for these two activities is that, either because this is 
the only case they fully understand or because it is the easiest one; the majority of the students would choose for the 
first example a matrix whose columns can be generated from one column. Of course, in theory the students can present 
at least one of the following cases: 

• a column vector generates the other two columns;

• a column vector is a linear combination of the other two.

The matrix in the first example cannot have a zero column (as the trivial case of linear dependence of a set of vectors), 
since the students were asked to offer a matrix with no zero values. In this case the authors’ hypothesis was confirmed 
for the vast majority of the participants. Most students indeed responded to the requirements of the first activity by 
choosing the simplest construction, with vectors being multiples of the first, and hence lying on the same straight line. 
With this the students appeared to have linear dependence, as connected with a - not necessarily realised - co-linearity. 
This is further verified by the spontaneity of their choice to express the second and third column as products (multiples) 
of the first.  

The second activity prompted the students to produce an example with a modification involving a different linear 
dependence between vectors. Here, the third vector was a linear combination of the other two, i.e. the third column was 
not simply the sum of the other two. Some students, after constructing their own cases of linearly dependent columns, 
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stated the linear dependence through the corresponding vector equation. They wrote down the linear relation between 
the vectors to reveal the linear dependence. By contrast, other students were satisfied with the matrix and did not write 
down the linear combination of vectors that demonstrates linear dependence. They eventually did so only after they 
were prompted. The rest of the students, in spite of all the discussion about linear dependence, did not understand what 
they should do, and did not produce a suitable matrix, doing so only after explanatory exhortation. 

Resorting to the definition in order to prove linear dependence indicates an inability to trust the mechanism by which 
they produced the vectors, implicitly assuming the geometric argument involving collinear vectors was not enough to 
demonstrate linear dependence. Vectors were regarded as abstract mathematical objects, without the corresponding 
geometric visualisation. It is the formal form and easier example that most students related to, due to their previous 
knowledge and education. 

In the following session, students compared the system of equations with the 3D vector decomposition. The three 
numbers u1, u2, and u3 are the co-ordinates of the first vector, the next three are the co-ordinates of the second vector, 
and so on. However, the students did not realise that the vectors u, v and w are just the columns of matrix Α, if one 
writes the system in the form Ax = b. The replacement of b with x made the connection even more difficult. The change 
in the names of the variables certainly created conceptual problems for the students, as is evidenced by the following 
statement made by a student, viz. so, v will be the same as y and w the same as z.... This means they equated a vector 
with a number. The way co-ordinates were introduced caused fellow students to remark that …they do it in a strange 
order, it is true. These students compiled the matrix row by row and not column by column, giving first the first 
co-ordinates of each vector, then the second ones and lastly the third co-ordinates. 

Some students still exhibited a difficulty in understanding the matrix and the vector of constant terms. While some 
students realised this vector determined the existence of a solution, others were puzzled. Thus, it became necessary to 
repeat that changes in one coefficient of the system affected the existence and kind of solution, and the meaning of the 
vectors. 

The performance of the subjects and their responses verified a prediction from the literature, i.e. the effectiveness of 
an intercession using tools and social interactions, as far as the learning process is concerned, usually also depends on 
the difference in the existing skills of the students [14]. The choice of the spiral character of the educational scheme was 
also validated. 

CONCLUSIONS 

The development of the visual-spatial skills of the students was observed in relation to the symbolic, algebraic and 
matrix approach to the conceptualisation of systems, and the connection between embodied and symbolic knowledge 
[15]. In Tall’s terms, starting from the formal world and having only a formal knowledge of the definitions, students 
move through to processing concepts in the embodied world, creating cognitive content that allows a symbolic 
treatment and eventually the return to the formal language with a new depth of knowledge. The indirect approach by the 
students towards these concepts was pursued and experimented with, eventually allowing the concepts to be approached 
in a more direct way, thereby improving their knowledge and understanding. 

A system that corresponds to a linear dependence of vectors was analysed to allow for the transfer of understanding 
from R2, through appropriate generalisation, to R3. Thus, the concept of linearly dependent vectors was better 
understood. Students first observed that the linear dependence in R3 is not restricted to parallel vectors, but also to 
coplanar vectors. They perceived linear dependence as tantamount to the collapse of a unique solution. Consequently, 
they acquired an intuitive perception of linear dependence in three-dimensional space, transcending the unproductive 
application of rigid definitions.  

The application caters to representational flexibility, i.e. through particular activities students link the graphical to the 
algebraic representations and devise solutions to novel problems. However, because there is always the risk of 
developing their own mistaken theories if left without assistance, suitable counter-examples and problems have been 
prepared [2][16-18]. 

The development of visual-spatial skills on the part of the students was noticeable. Starting with a memorised 
knowledge of the definitions, they processed the concepts, facing cognitive conflicts and creating new interconnections 
that contributed to the creation of more complex cognitive models and a deeper understanding. Students reached 
an objectification of definitions, which were connected with representations and procedural techniques. Still, the 
development of a new comprehension of vectors was not the sole benefit of the session. With relative ease, an improved 
understanding of Gaussian elimination was developed. 

The power of processing by a group of students when taking place within a properly organised framework was 
demonstrated, i.e. processing by some students may not have occurred without the comments of others. The two 
contributions could be referred to as collaborative creation or, at a higher level, collaborative application. The difference 
from the use of applications of mathematics was obvious [3]. 
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With the capability to switch between various graphical representations the students could concentrate upon the 
particular and general properties of objects and created a more integrated and coherent picture of them. The semiotics 
and syntax of the representational environment was easily achieved. For example, in the sixth session it was possible for 
a student to input row-by-row despite the initial design of the 3D vector decomposition application for inputting 
column-by-column. Here was the use of digital technology to improve cognition, which functioned as a reorganiser by 
presenting mathematical objects in multiple forms and with different, alternative approaches and views [18][19]. 
Hence, critical thought was strengthened. 

Technology offers exquisite mechanisms for visual representations. For example, in the case of calculus, the visualised 
ideas in the mind need to be connected to the processes of calculation and proof, else they are just intuitive knowledge 
and not mathematical [5][19]. Multiple applications are, therefore, needed - going through the learning cycle and the 
three worlds of mathematics - in order to achieve a satisfactory level of experience and ability to transfer from one 
representation to another, a basic characteristic of this teaching. 

As a conclusion, it remains as a crucial factor for the acquisition of learning benefit from the multi-representational 
environment, its pedagogical exploitation and not its simple presence. The theoretical framework set by Tall and the 
methodology devised by Kolb are tools that allow the maximisation of the benefits of a constructive environment. 
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